Friday 26 April 2013

What is the impact on existing routines if we create expert routine?

Automatically existing routines will be deleted or deactive. 

We have following types of routines in BI 7. 

Start Routine:

The start routine is run for each data package at the start of the transformation. The start routine has a table in the format of the source structure as input and output parameters. It is used to perform preliminary calculations and store these in a global data structure or in a table. This structure or table can be accessed from other routines. You can modify or delete data in the data package.

Routine for Key Figures or Characteristics:

This routine is available as a rule type; you can define the routine as a transformation rule for a key figure or a characteristic. The input and output values depend on the selected field in the transformation rule. 

End Routine:

An end routine is a routine with a table in the target structure format as input and output parameters. You can use an end routine to post process data after transformation on a package-by-package basis. For example, you can delete records that are not to be updated, or perform data checks.

Expert Routine:

This type of routine is only intended for use in special cases. You can use the expert routine if there are not sufficient functions to perform a transformation. The expert routine should be used as an interim solution until the necessary functions are available in the standard routine. 

Difference among start routines, end routines and expert routines

Start Routine: Start routine runs before the transformation rules. It manipulates the source data package. The source data package is in the structure of data source. The start routine has a table in the format of the source structure as input and output parameters. It is used to perform preliminary calculations and store these in a global data structure or in a table. This structure or table can be accessed from other routines. You can modify or delete data in the data package. Generally used for Filtering records.

End Routine: End routine runs after the transformation rules. It manipulates the target data package. The result package is in the structure of the target object. It is a routine with a table in the target structure format as input and output parameters. You can use an end routine to post process data after transformation on a package-by-package basis. For example, you can delete records that are not to be updated, or perform data checks. 


Expert Routine: This will trigger without any transformation Rule. Whenever we try to write a expert routine, all existing rules are deleted. This is used generally for customizing rules. It is helpful if complex or better performing transformations are needed. 

When we use write optimized DSO?


Write optimized DSO used to pull large volume of data 

a. Used where fast loads are essential. Example: multiple loads per day (or) short source system access times (world wide system landscapes). 
i) If the Data Source is not delta enabled. In this case, you would want to     have a Write-Optimized DataStore to be the first stage in BI and then pull the Delta request to a cube. 
ii) Write-optimized DataStore object is used as a temporary storage area for large sets of data when executing complex transformations for this data before it is written to the DataStore object. Subsequently, the data can be updated to further InfoProviders. You only have to create the complex transformations once for all incoming data. 
b. Write-optimized DataStore objects can be the staging layer for saving data. Business rules are only applied when the data is updated to additional InfoProviders. 
c. If you want to retain history at request level. In this case you may not need to have PSA archive; instead you can use Write-Optimized DataStore. 
d. If a multi dimensional analysis is not required and you want to have operational reports, you might want to use Write Optimized DataStore first, and then feed data into Standard Datastore. 
e. Probably you can use it for preliminary landing space for your incoming data from diffrent sources. 
f. If you want to report daily refresh data with out activation.In this case it can be used in reporting layer with InfoSet (or) MultiProvider. 

Functionality of Write-Optimized DataStore 

Only active data table (DSO key: request ID, Packet No, and Record No): 

o No change log table and no activation queue. 
o Size of the DataStore is maintainable. 
o Technical key is unique. 
o Every record has a new technical key, only inserts. 
o Data is stored at request level like PSA table. 

No SID generation: 

o Reporting is possible(but you need make sure performance is optimized ) 
o BEx Reporting is switched off. 
o Can be included in InfoSet or Multiprovider. 
o Performence improvement during dataload. 

Fully integrated in data flow: 

o Used as data source and data target 
o Export into info providers via request delta 

Uniqueness of Data: 

o Checkbox “Do not check Uniqueness of data”. 
o If this indicator is set, the active table of the DataStore object could contain 

several records with the same key. 

Allows parallel load. 

Can be included in Process chain with out activation step. 

Supports Archiving.

Difference between SAP BI 3.x, 7.0, 7.3

Major Differences between Sap Bw 3.5 & Sap BI 7.0 version:


1. In Infosets now you can include Infocubes as well.
2. The Remodeling transaction helps you add new key figure and characteristics and handles historical data as well without much hassle. This is only for info cube.
3. The BI accelerator (for now only for infocubes) helps in reducing query run time by almost a factor of 10 - 100. This BI accelerator is a separate box and would cost more. Vendors for these would be HP or IBM.
4. The monitoring has been improved with a new portal based cockpit. Which means you would need to have an EP guy in your project for implementing the portal !
5. Search functionality has improved!! You can search any object. Not like 3.5
6. Transformations are in and routines are passe! Yes, you can always revert to the old transactions too.
7. The Data Warehousing Workbench replaces the Administrator Workbench.8. Functional enhancements have been made for the DataStore object: New type of DataStore object Enhanced settings for performance optimization of DataStore objects.
9. The transformation replaces the transfer and update rules.
10. New authorization objects have been added
11. Remodeling of InfoProviders supports you in Information Lifecycle Management.
12 The Data Source:
There is a new object concept for the Data Source.
Options for direct access to data have been enhanced.From BI, remote activation of Data Sources is possible in SAP source systems.
13.There are functional changes to the Persistent Staging Area (PSA).14.BI supports real-time data acquisition.
15 SAP BW is now known formally as BI (part of NetWeaver 2004s). It implements the Enterprise Data Warehousing (EDW). The new features/ Major differences include :
a) Renamed ODS as DataStore.
b) Inclusion of Write-optmized DataStore which does not have any change log and the requests do need any activation
c) Unification of Transfer and Update rules
d) Introduction of "end routine" and "Expert Routine"
e) Push of XML data into BI system (into PSA) without Service API or Delta Queue
f) Intoduction of BI accelerator that significantly improves the performance.
16. Load through PSA has become a mandatory. You can't skip this, and also there is no IDoc transfer method in BI 7.0. DTP (Data Transfer Process) replaced the Transfer and Update rules. Also in the Transformation now we can do "Start Routine, Expert Routine and End Routine". during data load.

New features in BI 7 compared to earlier versions:



i. New data flow capabilities such as Data Transfer Process (DTP), Real time data Acquisition (RDA).
ii. Enhanced and Graphical transformation capabilities such as Drag and Relate options.
iii. One level of Transformation. This replaces the Transfer Rules and Update Rulesiv. Performance optimization includes new BI Accelerator feature.
v. User management (includes new concept for analysis authorizations) for more flexible BI end user authorizations.

ASAP Methodologies

ASAP stands for Accelerated SAP. Its purpose is to help design SAP implementation in the most efficient manner possible. Its goal is to effectively optimize time, people, quality and other resources, using a proven methodology to implementation. ASAP focuses on tools and training, wrapped up in a five-phase process oriented road map for guiding implementation.The road map is composed of five well-known consecutive phases:

Phase 1 Project Preparation
Phase 2 Business Blueprint
Phase 3 Realization
Phase 4 Final Preparation
Phase 5 Go-Live and supportIn today's post we will discuss the first phase.

Phase 1 : Project PreparationPhase


One initiates with a retrieval of information and resources. It is an important time to assemble the necessary components for the implementation. Some important milestones that need to be accomplished for phase 1 include

• Obtaining senior-level management/stakeholder support
• identifying clear project objectives
• architect an efficient decision-making process
• creating an environment suitable for change and re-engineering
• building a qualified and capable project team.

Senior level management support:
One of the most important milestones with phase 1 of ASAP is the full agreement and cooperation of the important company decision-makers - key stake holders and others. Their backing and support is crucial for a successful implementation.

Clear project objectives:
be concise in defining what your objectives and expectations are for this venture. Vague or unclear notions of what you hope to obtain with SAP will handicap the implementation process. Also make sure that your expectations are reasonable considering your company's resources. It is essential to have clearly defined ideas, goals and project plans devised before moving forward.

An efficient decision making process:
One obstacle that often stalls implementation is a poorly constructed decision-making process. Before embarking on this venture, individuals need to be clearly identified. Decide now who is responsible for different decisions along the way. From day one, the implementation decision makers and project leaders from each area must be aware of the onus placed on them to return good decisions quickly.

Environment suitable for change and re engineering: Your team must be willing to accept that, along with new SAP software, things are going to change, the business will change, and information technology enabling the business will change as well. By implementing SAP, you will essentially redesign your current practices to model more efficient or predefined best business practices as espoused by SAP. Resistance to this change will impede the progress of your implementation.

ASAP- Second Phase- Business Blueprint

SAP has defined a business blueprint phase to help extract pertinent information about your company that is necessary for implementation. These blueprints are in the form of questionnaires that are designed to probe for information that uncovers how your company does business. As such, they also serve to document the implementation. Each business blueprint document essentially outlines your future business processes and business requirements. The kinds of questions asked are germane to the particular business function, as seen in the following sample questions:

1) What information do you capture on a purchase order?

2) What information is required to complete a purchase order?


Accelerated SAP question and answer database: The question and answer database (QADB) is a simple although aging tool designed to facilitate the creation and maintenance of your business blueprint. This database stores the questions and the answers and serves as the heart of your blue print. Customers are provided with a customer input template for each application that collects the data. The question and answer format is standard across applications to facilitate easier use by the project team.

Issues database:
Another tool used in the blueprinting phase is the issues database. This database stores any open concerns and pending issues that relate to the implementation. Centrally storing this information assists in gathering and then managing issues to resolution, so that important matters do not fall through the cracks. You can then track the issues in database, assign them to team members, and update the database accordingly.

ASAP Phase- 3 - Realization:

With the completion of the business in phase 2, "functional" experts are now ready to begin configuring SAP. The Realization phase is broken in to two parts.
1) Your SAP consulting team helps you configure your baseline system, called the baseline configuration.
2) Your implementation project team fine-tunes that system to meet all your business and process requirements as part of the fine tuning configuration.

The initial configuration completed during the base line configuration is based on the information that you provided in your blueprint document. The remaining approximately 20% of your configuration that was not tackled during the baseline configuration is completed during the fine tuning configuration. Fine tuning usually deals with the exceptions that are not covered in baseline configuration. This final bit of tweaking represents the work necessary to fit your special needs.

Configuration Testing:
With the help of your SAP consulting team, you segregate your business processes into cycles of related business flows. The cycles serve as independent units that enable you to test specific parts of the business process. You can also work through configuring the SAP implementation guide (IMG). A tool used to assist you in configuring your SAP system in a step by step manner.

Knowledge Transfer:
As the configuration phase comes to a close, it becomes necessary for the Project team to be self-sufficient in their knowledge of the configuration of your SAP system. Knowledge transfer to the configuration team tasked with system maintenance (that is, maintenance of the business processes after Go-live) needs to be completed at this time.In addition, the end users tasked with actually using the system for day-to-day business purposes must be trained.

ASAP Methodology - Phase 4 - Final Preparation:

As phase 3 merges into phase 4, you should find yourselves not only in the midst of SAP training, but also in the midst of rigorous functional and stress testing. Phase 4 also concentrates on the fine tuning of your configuration before Go-live and more importantly, the migration of data from your old system or systems to SAP.
Workload testing (including peak volume, daily load, and other forms of stress testing), and integration or functional testing are conducted to ensure the accuracy of your data and the stability of your SAP system. Because you should have begun testing back in phase 2, you do not have too far to go until Go-live. Now is an important time to perform preventative maintenance checks to ensure optimal performance at your SAP system.At the conclusion of phase 4, take time to plan and document a Go-live strategy. Preparation for Go-live means preparing for your end-users questions as they start actively working on the new SAP system.

ASAP - Phase 5 - Go-live and Support:

The Go-live milestone is itself is easy to achieve; a smooth and uneventful Go-live is another matter altogether. Preparation is the key, including attention to what-if scenarios related not only to the individual business processes deployed but also to the functioning of technology underpinning these business processes and preparation for ongoing support, including maintenance contracts and documented processes and procedures are essential.